

Performance Enhancements
In PostgreSQL 8.4

PGDay.EU 2009
Paris, France

Magnus Hagander
Redpill Linpro AB

PostgreSQL 8.4
● Released July 2009

– 8.4.1 released September 2009

● Major upgrade from 8.3
● New features and enhancements

of existing ones

Using PostgreSQL performance
● “ORM-like queries” only get you so

far
● Application specific optimizations
● Don't be afraid to let the database

work!

Performance enhancements
● Some are application transparent

– Possibly even DBA transparent

● Some require application changes

Let's get started
● Query execution optimizations

Anti-joins and Semi-joins
● Formalized JOIN methods for

inequality joins
● Better performance for EXISTS /

NOT EXISTS

Anti-joins and Semi-joins
● 8.3
pagila=# EXPLAIN SELECT * FROM actor a WHERE NOT EXISTS
 (SELECT * FROM film_actor fa WHERE fa.actor_id=a.actor_id);

 Seq Scan on actor (cost=0.00..288.99 rows=100 width=25)
 Filter: (NOT (subplan))
 SubPlan
 -> Index Scan using film_actor_pkey on film_actor
 (cost=0.00..38.47 rows=27 width=12)
 Index Cond: (actor_id = $0)

Anti-joins and Semi-joins
● 8.3
pagila=# EXPLAIN SELECT * FROM actor a WHERE NOT EXISTS
 (SELECT * FROM film_actor fa WHERE fa.actor_id=a.actor_id);

 Nested Loop Anti Join (cost=0.00..30.57 rows=1 width=25)
 -> Seq Scan on actor (cost=0.00..4.00 rows=200 width=25)
 -> Index Scan using film_actor_pkey on film_actor
 (cost=0.00..1.54 rows=27 width=2)
 Index Cond: (film_actor.actor_id = actor.actor_id)

Anti-joins and Semi-joins
● 8.3
pagila=# EXPLAIN SELECT * FROM actor a WHERE EXISTS
 (SELECT * FROM film_actor fa WHERE fa.actor_id=a.actor_id);

 Nested Loop Semi Join (cost=0.00..30.57 rows=200 width=25)
 -> Seq Scan on actor (cost=0.00..4.00 rows=200 width=25)
 -> Index Scan using film_actor_pkey on film_actor
 (cost=0.00..1.54 rows=27 width=2)
 Index Cond: (film_actor.actor_id = actor.actor_id)

Hash for DISTINCT/UNION
● Previously, always a sort+unique
● No longer guaranteed sorted!

– Add ORDER BY
– Both plans will be considered

● Also affects EXCEPT &
INTERSECT

Hash improvements
● Faster algorithms

– WARNING! New hash values!

● Also faster hash indexes
– Still not WAL-logged

● And optimizations of HASH joins
– Particularly around large joins

Moving on
● DBA optimizations

Function level statistics
● pg_stat_user_functions
● Controlled by “track_functions”

– none, pl or all

● Tracks calls, time, and internal
time

postgres=# select * from pg_stat_user_functions ;
-[RECORD 1]------
funcid | 101414
schemaname | public
funcname | foo
calls | 1003
total_time | 6
self_time | 6

Free Space Map (FSM)
● Stores list of free blocks in

relations
– Caused by DELETE and UPDATE

● Used by INSERT & UPDATE

New Free Space Map (FSM)
● No more max_fsm_pages!
● Dynamically tuned
● Uses normal buffer cache

New Free Space Map (FSM)
● No global lock
● Not lost on crash

New Free Space Map (FSM)
● No global lock
● Not lost on crash

● VACUUM is still needed, of
course...

Visibility Map
● Tracks pages that are “visible to all

transactions” in bitmap
● Set by VACUUM
● Cleared by

INSERT/UPDATE/DELETE

Partial VACUUM
● “Visible to all” pages skipped by

VACUUM
● Only heap tables, not indexes
● Still requires freezing

VACUUM snapshot tracking
● Snapshot tracking for idle sessions
● Makes VACUUM clean up better

with long running transactions
● <IDLE> In Transaction

Stats temp file improvements
● Previously, unconditionally

written twice/sec in data dir
● Now, written only on demand
● And in configurable location

(tmpfs!)

Parallel pg_restore
● Restore from dump was single

threaded
● Can now load in <n> sessions
● At least one table per session
● No single-transaction!

int8 pass by value
● 64-bit integers finally take

advantage of 64-bit CPUs

Moving on
● Application features

Subselects in LIMIT/OFFSET
● Previously, only constants allowed
● Required two queries / roundtrips

– Or cursor in function

● SELECT * FROM … LIMIT (
 SELECT something FROM
other
)

WINDOW aggregates
● Perform aggregates over parts of

data
● Avoid requiring multiple queries
● Avoid multiple scans

SELECT name, department, salary,
rank() OVER (
PARTITION BY department
ORDER BY salary DESC

)
FROM employees

 name | department | salary | rank
-------+------------+--------+------
 Berra | Ekonomi | 29400 | 1
 Åke | Ekonomi | 29400 | 1
 Sune | Ekonomi | 24000 | 3
 Arne | IT | 24000 | 1
 Pelle | IT | 22000 | 2
 Kalle | IT | 18000 | 3
(6 rows)

SELECT name, department, salary,
rank() OVER (
PARTITION BY department
ORDER BY salary DESC

),
rank() OVER (
ORDER BY salary DESC)

FROM employees

 name | department | salary | rank | rank
-------+------------+--------+------+------
 Åke | Ekonomi | 29400 | 1 | 1
 Berra | Ekonomi | 29400 | 1 | 1
 Sune | Ekonomi | 24000 | 3 | 3
 Arne | IT | 24000 | 1 | 3
 Pelle | IT | 22000 | 2 | 5
 Kalle | IT | 18000 | 3 | 6
(6 rows)

Common Table Expressions
● WITH RECURSIVE
● Traverse trees and graphs in SQL
● .. avoid multiple queries

– (also makes your life easier)

WITH RECURSIVE t(id, department, name, manager) AS (
 SELECT id, department, name, manager
 FROM emp WHERE name='Kalle'
 UNION ALL
 SELECT emp.id,emp.department,emp.name,emp.manager
 FROM emp JOIN t ON t.manager=emp.id
)
SELECT * FROM t;

 id | department | name | manager
----+------------+-------+---------
 1 | IT | Kalle | 3
 3 | IT | Arne | 5
 5 | Ekonomi | Berra |
(3 rows)

 id | department | name | manager
----+------------+-------+---------
 1 | IT | Kalle | 3
 3 | IT | Arne | 5
 5 | Ekonomi | Berra |
(3 rows)

Very important!

Lots of more improvements!
● But that's it for now..
● Go download and test!

Performance Enhancements
In PostgreSQL 8.4

http://2009.pgday.eu/feedback
Questions?

magnus@hagander.net
Twitter: @magnushagander

http://blog.hagander.net

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

