
 

Performance Enhancements 
In PostgreSQL 8.4

PGDay.EU 2009
Paris, France

Magnus Hagander
Redpill Linpro AB



PostgreSQL 8.4
● Released July 2009

– 8.4.1 released September 2009

● Major upgrade from 8.3
● New features and enhancements 

of existing ones



Using PostgreSQL performance
● “ORM-like queries” only get you so 

far
● Application specific optimizations
● Don't be afraid to let the database 

work!



Performance enhancements
● Some are application transparent

– Possibly even DBA transparent

● Some require application changes



Let's get started
● Query execution optimizations



Anti-joins and Semi-joins
● Formalized JOIN methods for 

inequality joins
● Better performance for EXISTS / 

NOT EXISTS



Anti-joins and Semi-joins
● 8.3
pagila=# EXPLAIN SELECT * FROM actor a WHERE NOT EXISTS
   (SELECT * FROM film_actor fa WHERE fa.actor_id=a.actor_id);

 Seq Scan on actor  (cost=0.00..288.99 rows=100 width=25)
   Filter: (NOT (subplan))
   SubPlan
     ->  Index Scan using film_actor_pkey on film_actor
            (cost=0.00..38.47 rows=27 width=12)
           Index Cond: (actor_id = $0)



Anti-joins and Semi-joins
● 8.3
pagila=# EXPLAIN SELECT * FROM actor a WHERE NOT EXISTS
   (SELECT * FROM film_actor fa WHERE fa.actor_id=a.actor_id);

 Nested Loop Anti Join  (cost=0.00..30.57 rows=1 width=25)
   ->  Seq Scan on actor  (cost=0.00..4.00 rows=200 width=25)
   ->  Index Scan using film_actor_pkey on film_actor  
           (cost=0.00..1.54 rows=27 width=2)
         Index Cond: (film_actor.actor_id = actor.actor_id)



Anti-joins and Semi-joins
● 8.3
pagila=# EXPLAIN SELECT * FROM actor a WHERE EXISTS
   (SELECT * FROM film_actor fa WHERE fa.actor_id=a.actor_id);

 Nested Loop Semi Join  (cost=0.00..30.57 rows=200 width=25)
   ->  Seq Scan on actor  (cost=0.00..4.00 rows=200 width=25)
   ->  Index Scan using film_actor_pkey on film_actor 
           (cost=0.00..1.54 rows=27 width=2)
         Index Cond: (film_actor.actor_id = actor.actor_id)



Hash for DISTINCT/UNION
● Previously, always a sort+unique
● No longer guaranteed sorted!

– Add ORDER BY
– Both plans will be considered

● Also affects EXCEPT & 
INTERSECT



Hash improvements
● Faster algorithms

– WARNING! New hash values!

● Also faster hash indexes
– Still not WAL-logged

● And optimizations of HASH joins
– Particularly around large joins



Moving on
● DBA optimizations



Function level statistics
● pg_stat_user_functions
● Controlled by “track_functions”

– none, pl or all

● Tracks calls, time, and internal 
time



postgres=# select * from pg_stat_user_functions ;
-[ RECORD 1 ]------
funcid     | 101414
schemaname | public
funcname   | foo
calls      | 1003
total_time | 6
self_time  | 6



Free Space Map (FSM)
● Stores list of free blocks in 

relations
– Caused by DELETE and UPDATE

● Used by INSERT & UPDATE



New Free Space Map (FSM)
● No more max_fsm_pages!
● Dynamically tuned
● Uses normal buffer cache



New Free Space Map (FSM)
● No global lock
● Not lost on crash



New Free Space Map (FSM)
● No global lock
● Not lost on crash

● VACUUM is still needed, of 
course...



Visibility Map
● Tracks pages that are “visible to all 

transactions” in bitmap
● Set by VACUUM
● Cleared by 

INSERT/UPDATE/DELETE



Partial VACUUM
● “Visible to all” pages skipped by 

VACUUM
● Only heap tables, not indexes
● Still requires freezing



VACUUM snapshot tracking
● Snapshot tracking for idle sessions
● Makes VACUUM clean up better 

with long running transactions
● <IDLE> In Transaction



Stats temp file improvements
● Previously, unconditionally 

written twice/sec in data dir
● Now, written only on demand
● And in configurable location 

(tmpfs!)



Parallel pg_restore
● Restore from dump was single 

threaded
● Can now load in <n> sessions
● At least one table per session
● No single-transaction!



int8 pass by value
● 64-bit integers finally take 

advantage of 64-bit CPUs



Moving on
● Application features



Subselects in LIMIT/OFFSET
● Previously, only constants allowed
● Required two queries / roundtrips

– Or cursor in function

● SELECT * FROM … LIMIT (
   SELECT something FROM 
other
)



WINDOW aggregates
● Perform aggregates over parts of 

data
● Avoid requiring multiple queries
● Avoid multiple scans



SELECT name, department, salary,
rank() OVER (
PARTITION BY department
ORDER BY salary DESC

)
FROM employees



 name  | department | salary | rank 
-------+------------+--------+------
 Berra | Ekonomi    |  29400 |    1
 Åke   | Ekonomi    |  29400 |    1
 Sune  | Ekonomi    |  24000 |    3
 Arne  | IT         |  24000 |    1
 Pelle | IT         |  22000 |    2
 Kalle | IT         |  18000 |    3
(6 rows)



SELECT name, department, salary,
rank() OVER (
PARTITION BY department
ORDER BY salary DESC

),
rank() OVER (
ORDER BY salary DESC)

FROM employees



 name  | department | salary | rank | rank 
-------+------------+--------+------+------
 Åke   | Ekonomi    |  29400 |    1 |    1
 Berra | Ekonomi    |  29400 |    1 |    1
 Sune  | Ekonomi    |  24000 |    3 |    3
 Arne  | IT         |  24000 |    1 |    3
 Pelle | IT         |  22000 |    2 |    5
 Kalle | IT         |  18000 |    3 |    6
(6 rows)



Common Table Expressions
● WITH RECURSIVE
● Traverse trees and graphs in SQL
● .. avoid multiple queries

– (also makes your life easier)



WITH RECURSIVE t(id, department, name, manager) AS (
  SELECT id, department, name, manager
   FROM emp WHERE name='Kalle'
 UNION ALL
  SELECT emp.id,emp.department,emp.name,emp.manager
   FROM emp JOIN t ON t.manager=emp.id
)
SELECT * FROM t;



 id | department | name  | manager 
----+------------+-------+---------
  1 | IT         | Kalle |       3
  3 | IT         | Arne  |       5
  5 | Ekonomi    | Berra |        
(3 rows)



 id | department | name  | manager 
----+------------+-------+---------
  1 | IT         | Kalle |       3
  3 | IT         | Arne  |       5
  5 | Ekonomi    | Berra |        
(3 rows)

Very important!



Lots of more improvements!
● But that's it for now..
● Go download and test!
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